If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-8x-43=0
a = 4; b = -8; c = -43;
Δ = b2-4ac
Δ = -82-4·4·(-43)
Δ = 752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{752}=\sqrt{16*47}=\sqrt{16}*\sqrt{47}=4\sqrt{47}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{47}}{2*4}=\frac{8-4\sqrt{47}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{47}}{2*4}=\frac{8+4\sqrt{47}}{8} $
| -14+2n=8n+8n | | (2a^2-a+5)^2=0 | | -7x=5x | | 1/8r=-15/16 | | 2x+4=3x=17 | | 5x-5-2+13=x-2x | | 7c+4/8=11 | | 5x+20=2x+7 | | 16x+14-6=0 | | x+3-5+2x=x+8-4 | | 7.2=6y-2.4 | | 2/3x+4/3x=12 | | 13x+13=360 | | 43=8+5n | | 2x+10=-2x+2(2x+5) | | 2x+10=-2x+2x(2x+5) | | 7y+6)+4y=116 | | -(x)=-8 | | (1/2n)=180 | | (x)=-6 | | -11÷×=x-11 | | 3/1=n+4/3 | | n+3|8=-4 | | (x)=29 | | 12x-24=6(2x+3) | | 1/3r=10 | | 9/10x-25/10x=6 | | 6y+16-2y=4(4+y) | | 30(c+19)=630 | | 11(k-852)=792 | | 3/5=u/7 | | 3-x=1/2(9-x)-1/9(2x-9) |